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General Transformations of Object Representations in
Human Visual Cortex

Emily J. Ward,' “Leyla Isik,” and Marvin M. Chun?
'Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin 53706, 2Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, and 3Yale University, New Haven, Connecticut 06520

The brain actively represents incoming information, but these representations are only useful to the extent that they flexibly reflect
changes in the environment. How does the brain transform representations across changes, such as in size or viewing angle? We
conducted a fMRI experiment and a magnetoencephalography experiment in humans (both sexes) in which participants viewed objects
before and after affine viewpoint changes (rotation, translation, enlargement). We used a novel approach, representational transforma-
tion analysis, to derive transformation functions that linked the distributed patterns of brain activity evoked by an object before and after
an affine change. Crucially, transformations derived from one object could predict a postchange representation for novel objects. These
results provide evidence of general operations in the brain that are distinct from neural representations evoked by particular objects and

scenes.
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ignificance Statement

The dominant focus in cognitive neuroscience has been on how the brain represents information, but these representations are
only useful to the extent that they flexibly reflect changes in the environment. How does the brain transform representations, such
as linking two states of an object, for example, before and after an object undergoes a physical change? We used a novel method to
derive transformations between the brain activity evoked by an object before and after an affine viewpoint change. We show that
transformations derived from one object undergoing a change generalized to a novel object undergoing the same change. This
result shows that there are general perceptual operations that transform object representations from one state to another.

~

Introduction

The primary function of the brain is to adaptively interact with
the world, which requires both representing and transforming
incoming information (deCharms and Zador, 2000). Represen-
tations are information-bearing structures, and transformations
are the computational procedures that operate on those struc-
tures. The dominant focus in cognitive neuroscience has been on
neural representation, such as how the visual system codes for
features, objects, and scenes. Patterns of brain activity (measured
with fMRI and other imaging modalities) reflect how neuronal
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populations code and represent information (Kriegeskorte et al.,
2008b). But these representations are only useful to the extent
that they flexibly reflect changes in the environment and behav-
ioral goals. For example, we need to recognize an umbrella re-
gardless of whether it is closed or open, but we also need to know
that it is only useful to provide protection against rain when it is
open. How does the brain link object state representations, such
as before and after an object undergoes a change?

Some of the most common changes that our brain must link
are affine visual changes, such as when we move toward or away
from an object. When we see an object from a new viewpoint,
there are two problems our perceptual system needs to solve: (1)
recognizing that the object is the same, despite the change; and
(2) recognizing how the viewpoint has changed, regardless of the
object. The first problem of viewpoint invariance has been stud-
ied widely (DiCarlo and Cox, 2007) and is demonstrated by sim-
ilarity between object representations (as assessed by distance
metrics) across viewpoints. But it is unknown whether the second
problem is solved in the same similarity-based manner or
whether there are general transformations of object representa-
tions. For example, a transformation derived from one object
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undergoing a change should generalize to a novel object under-
going the same change: given an object’s initial prechange repre-
sentation, it should be possible to predict its final postchange
representation. Furthermore, the transformations should oper-
ate on object representations that are high-level and generalizable
to novel stimuli, and not on “image-like” patterns (e.g., the stim-
uli themselves or retinotopic representations).

Alternatively, the brain may link perceptual states simply
through similarity. Patterns of brain activity can be systematically
characterized through distance metrics (e.g., representational
similarity analysis) (Kriegeskorte et al., 2008a), and predictable
state changes between stimuli result in higher pattern similarity
in the medial temporal lobe among the stimuli (Hindy and Turk-
Browne, 2016). However, if the brain also links perceptual states
through transformations beyond their initial similarity, this
could better account for differences between the representations
(e.g., predicting a pattern that is a better match to the true
postchange representation) and, importantly, would generalize
to new objects.

To determine how object representations are linked from one
state to another, we looked for transformations that operate
whenever we see any object undergoing a common viewpoint
change. In the first experiment, we scanned participants with
fMRI while they viewed images of three different objects before
and after one of five affine changes. We then used a novel ap-
proach, representational transformation analysis, to derive a
transformation function that could be applied to the prechange
object representation to generate the postchange object represen-
tation (like a function that transforms x [prechange] into y
[postchange]: flx) = y). This idea is similar to the classic idea of
visual routines (Ullman, 1984), which are primitive visual pro-
cessing operations that can establish properties and relationships
that are not explicit in the initial representations. In the second
experiment, we analyzed MEG data (Isik et al., 2014) from par-
ticipants who had viewed six different objects at four different
viewpoints. Using the same representational transformation
analysis, we looked for evidence of distinct computational stages
encompassed by the transformation. Across these two studies, we
find general transformations between representations of objects
that have undergone a common viewpoint change, such that
when the transformation is applied to a novel representation, it
produces an accurate prediction of a new representation.

Materials and Methods

Experiment 1: representational transformation analysis

with fMRI

Participants. Fourteen participants (6 men and 8 women) were recruited
from the Yale University community. The Yale University Human Sub-
jects Committee approved the experimental protocol. Participants pro-
vided informed written consent before the experiment. Participants had
normal or corrected-to-normal vision. Participants were paid for their
participation. The number of participants was selected to be sufficient for
multivoxel pattern detection using brief fMRI acquisition runs (Cou-
tanche and Thompson-Schill, 2012).

Apparatus. fMRI data were acquired at the Magnetic Resonance Re-
search Center at Yale University on a 3-T Trio (Siemens) equipped with
a 32-channel head coil. T1-weighted anatomical images were acquired
using a 3D MPRAGE sequence (TR = 2530 ms, TE = 2.77 ms, time to
inversion = 1100 ms, voxel size = 1 X 1 X 1 mm, matrix size = 256 X
256 X 256). T2*-weighted images sensitive to BOLD contrasts were ac-
quired using a multiband EPI sequence (TR = 1000 ms, TE = 30 ms, flip
angle = 62°, acquisition matrix = 84 X 84, in-plane resolution = 2.5 mm
square, 51 axial-oblique slices parallel to the anterior and posterior com-
missural line, slice thickness = 2.5, multiband 3, acceleration factor = 2).
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Stimuli were presented using PsychoPy (Peirce, 2007) and displayed
through an LCD projector on a rear-projection screen. Responses were
recorded using a 2-button fiberoptic response pad system.

Stimuli. Stimuli were color photographs of a single exemplar from
three distinct object categories: a moth (natural), a rain boot (manmade),
and a greeble-like object (novel) (Gauthier et al., 2003) presented on a
white background. The initial images were ~10° X 10° of visual angle in
size and were oriented in a canonical viewpoint. The initial images were
considered the “prechange” state of the object. For the “postchange”
state, the objects were subjected to five different affine changes: identity
(no change), size increase (by 50%), size decrease (by 50%), left in-plane
rotation (60° to the left), and right in-plane rotation (—60° to the right).
There were thus 15 images in total (3 stimulus types and 5 change types).
All images were presented in isolation at the center of the display.

Experimental design and procedure. Images were presented for 300 ms
with 3966 ms interstimulus interval with no jitter. The prechange and
postchange images were always presented sequentially, but the stimulus
type (natural, manmade, and novel) and change type (identical, size
increase, size decrease, left rotation, right rotation) were randomized
across runs and across participants.

There were 15 runs, each lasting 3 min and 12 s. Brief runs of this type
have been demonstrated to improve pattern classification (Coutanche
and Thompson-Schill, 2012). On each run, each state for each stimulus
type and each change type was presented once. In addition, there were 5
trials on which an image (drawn randomly from 15 images types) “jig-
gled.” Participants were instructed to look for these jiggles and press a
button whenever they saw it. To aid in subsequent fMRI modeling, 10
trials were null trials on which nothing appeared on the screen except a
fixation cross. In total, there were 45 trials (3 stimuli X 5 changes X 2
states [prechange and postchange] + 5 jiggle trials + 10 null trials = 45
trials).

fMRI data analysis. Functional images were corrected for motion and
for differences in slice timing. Data were registered to MNI152 standard
space template (2 mm isotropic voxel size). Voxels were smoothed using
a5 mm FWHM Gaussian filter (e.g., Xue et al., 2010), which may reduce
noise and improve sensitivity after motion correction (Kamitani and
Sawahata, 2010). Cortical reconstruction of each participant’s data was
performed with FreeSurfer software (http://surfer.nmr.mgh.harvard.
edu) (Fischl, 2012). For each run, a quadratic polynomial was fit and
removed to eliminate drift. Data were analyzed using FSL (Smith et al.,
2004) and in-house Python scripts.

Our analyses were run on lateral occipital ROIs defined in standard
space on a subject-by-subject basis from their FreeSurfer cortical recon-
struction. All transformation analyses were run on the results of an initial
GLM. The GLM was fit separately for each of the 15 runs. In each GLM,
each trial served as a separate regressor (3 stimuli X 5 changes X 2 states
[prechange and postchange] + 5 jiggle trials = 35 total regressors in the
GLM). Although the jiggle trials were included in the GLM, they were not
included in further analysis. Hemodynamic response function was fit to
the 300 ms stimulus presentation using a double gamma function with
o = 2.449 and delay of 6 s for the first gamma, and o = 4 and delay of 16 s
for the second gamma. This GLM resulted in 3 values that were extracted
for each trial and for each voxel within the lateral occipital anatomical
ROL

Representational transformation analysis. Transformation matrices
were computed separately for each participant, for each object, and for
each affine change. fMRI data were segmented into 15 folds, correspond-
ing to 15 experimental scan runs: 14 training folds and 1 left-out testing
fold. This approach is a type of cross-validation, where the transforma-
tion matrix can be generated on a subset of the data and then evaluated
on the held-out test data.

One stimulus was selected as the training stimulus, and one stimulus
was selected as the validation stimulus. In the training folds, the data for
the training stimulus were separated into “prechange” and “postchange”
patterns based on whether they reflected the pattern evoked by the pat-
tern evoked by the mid-sized, unrotated object or the pattern evoked by
the object that had undergone an affine change.

Each voxel (or channel, for Experiment 2) composing the prechange
patterns was used as an individual predictor, [X;, X,, X5, X, ... X, ], and
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Overview of the representational transformation analysis. A, Transformation matrices were obtained by finding the relationship between prechange patterns and postchange patterns

for atraining stimulus using L2-regularized regression. B, The transformation matrix was then generalized to a new object: the transformation was applied to a held-out prechange pattern fora new
object, generating a postchange predicted pattern. This pattern was correlated with the True Change pattern and the Wrong Change pattern. A higher correlation between the predicted pattern and

the true pattern indicated that the transformation was successful.

each voxel composing the postchange patterns was used as an individual
dependent variable [Y;, Y,, Y5, Y, ... Y,] (Fig. 1A). The goal was to
predict the response in each voxel in the postchange state (e.g., Y;) from
the response in all voxels in the prechange state (e.g., [X;, X5, X5, X, . . .
X,.]). In principle, this goal can be accomplished by iteratively fitting
linear regressions to predict each voxel in the postchange state from all
the voxels in the prechange state. In practice, a more efficient and equiv-
alent approach is to compute all models simultaneously by including all
data in one linear regression, which is possible because the same predic-
tors are used in all models.

A linear model was fit with an n [voxel] X 14 [runs] matrix of predic-
tors, X (and manually fit intercept) to predict an n [voxels] X 14 [runs]
matrix of dependent variables, Y. The solution to this linear regression is
as follows:

B=X"X)"'X"Y

where 3 is an 7 X n matrix of values reflecting how much each voxel in
the prechange state should be weighted to predict each voxel in the
postchange state. Because the number of predictors (voxels) was much
more than the number of samples (runs), it was necessary to regularize
the model. We used an L2 regularization to our linear regression (i.e.,
ridge regression), which penalizes the sum of squares of the weights. The
solution to this ridge regression is as follows:

B=X"X+a) XY

where a is the ridge regression penalty (set as « = 1 in both experiments)
and [ is the identity matrix. 3 served as the training transformation
matrix.

Once this transformation matrix was computed, it was applied to the
prechange pattern of the test stimulus in the remaining 15th testing fold
by taking the dot product of the n [voxels] X 1 [run] matrix of predictors
and the n X n transformation matrix to yield an n [voxels] X 1 [run]
predicted postchange pattern (Fig. 1B).

We assessed the success of the transformation by correlating the pre-
dicted postchange pattern to the true postchange pattern (e.g., did our
predicted pattern for “big moth” match the actual pattern for “big

moth?”). Thus, the higher the correlation between the predicted
postchange pattern and the true postchange pattern, the better the trans-
formation matrix was able to capture the general relationship between
the prechange and postchange patterns.

This process was repeated for the following: (1) each object, ensuring
that all objects served as the test stimulus; and (2) each affine change,
ensuring that all changes types served as the training transformation (Fig.
1), for a total of 15 (3 objects X 5 affine changes) 15-fold training
procedures.

Control analyses and permutation testing. To evaluate the correlations,
we conducted four control analyses that produced comparison correla-
tion values: (1) Wrong Change—for each predicted postchange pattern,
we correlated it with each wrong postchange pattern for the same object;
(2) Wrong Object—for each predicted postchange pattern, we correlated
it with the same postchange pattern for each wrong object; (3) Mis-
matched Labels—for each training fold, we permuted the labels on the
prechange and postchange patterns before finding the transformation
matrix; and (4) Scrambled Transformation—for each transformation
matrix, we permuted the coefficients before applying it to the test pre-
change pattern.

The primary control analysis was the Wrong Change analysis, which
tested whether the transformation was truly specific to the affine change
of interest or just producing object information (e.g., does the predicted
pattern for “big moth” resemble the pattern for “any moth” because the
representations are completely invariant?). We correlated the predicted
postchange pattern to the postchange patterns from each of the wrong
affine changes (Wrong Change) (e.g., we correlated the predicted pattern
for big boot to the pattern for left rotated boot, etc.). This process was
repeated for each affine change, ensuring that patterns evoked by all types
of affine changes served as the true and wrong patterns. In order for the
transformation to have succeeded, the predicted postchange pattern
should better match the true pattern (higher correlation) than the wrong
patterns (lower correlation).

The secondary control analyses were also informative: the Wrong Ob-
ject control tested whether the transformation was specific to the object
of interest or just generating patterns based on low-level features (e.g.,
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does the predicted pattern for “big moth” resemble the pattern for “big
anything” because all big items are represented with more retinotopic
area?). We correlated the predicted postchange pattern to the postchange
patterns for correct affine change but the wrong object (Wrong Object)
(e.g., we correlated the predicted pattern for big boot to the pattern for
big moth). This process was repeated for each stimulus, ensuring that
patterns evoked by all objects served as the true and wrong patterns.
In order for the transformation to have succeeded, the predicted
postchange pattern should better match the true pattern (higher corre-
lation) than the wrong patterns (lower correlation).

We also conducted two permutation analyses to approximate chance
performance: a label permutation approach (Mismatched Labels) and a
coefficient permutation approach (Scrambled Transformation). The
Mismatched Label and Scrambled Transformation analyses ensured
the quality of the regression analyses and integrity of the patterns. In the
Mismatched Label permutation approach, we used the same procedure
as described above with the following exceptions: In the training folds for
a given stimulus, the affine-change labels and state (prechange or
postchange) labels were randomly shuffled (n = 1000) before the data
were separated into “prechange” and “postchange” patterns. The trans-
formation matrix was generated based on these permuted labels and then
evaluated on the held-out test data (which retained the original, correct
affine-change and state labels). Given that there was a random relation-
ship between the prechange and postchange training patterns, the result-
ing transformation matrix should produce a mostly random postchange
predicted pattern, although some stimulus identity information may be
preserved because the labels were permuted within stimulus.

In the Scrambled Transformation permutation approach, we used the
representation transformation analysis procedure with the following ex-
ception: after the transformation matrix was computed, the matrix of
coefficients was randomly shuffled (between and among rows) (n =
1000) before it was applied to a validation prechange pattern. Given that
transformation matrix would now give a random mapping between
the prechange and postchange voxels, it should produce a random
postchange predicted pattern. Thus, the correlation between the true
postchange pattern and the random postchange predicted pattern should
also be at chance.

Transformation similarity versus initial pattern similarity. Another im-
portant factor to consider was whether the success of our transforma-
tions depended heavily on initial pattern similarity between the
prechange and true postchange patterns. If the transformations were
simply approximating initial pattern similarity (e.g., due to temporal
correlation or representational similarity), then the transformations
would be analogous to an identity function (like multiplying by 1), and
representational transformation analysis would serve no purpose beyond
pattern similarity analyses. Therefore, it was critical that the transforma-
tion analysis produce a pattern that is a better match (i.e., more corre-
lated) to the true postchange pattern than the initial similarity between
the prechange and postchange patterns.

We computed the Pearson correlation between prechange versus
postchange patterns (i.e., initial pattern similarity, 7. e simitarir,) and
compared it with the Pearson correlation between the predicted
postchange pattern and the true postchange pattern (i.e., the True
Change transformation prediction similarity, 7,,,spormation simitarin)- 1f
rrmnsformmiml similarity is greater than rpattern similarity> the transformation
produced a predicted postchange pattern that is more similar to the true
postchange pattern than the prechange and postchange patterns are to
each other.

We looked at the transformation prediction similarity as a function of
initial pattern similarity for 225 pairs of patterns (3 stimuli X 5 change
types X 15 runs) for each of the 14 participants. We evaluated this relation-
ship in three ways. First, as a basic measure of the relationship, we calculated
the correlation between 7., ormation simitarity 309 Tpastern simitarizy directly.
Next, we used a linear mixed-effects model to predict 7., ormation simitarity
from e simitariyys This model allowed us to determine how much
variance in transformation prediction similarity was predicted by initial
pattern similarity. Finally, to ensure that the patterns produced by the
transformation analysis indeed better matched the true postchange pat-
terns beyond the initial similarity between the prechange and postchange

J. Neurosci., October 3, 2018 - 38(40):8526 — 8537 = 8529

patterns, we compared the mean r with the mean

transformation similarirty

rparrem similarity.
Raw image analysis. To test whether the transformations are based on

low-level, image-like (arising from retinotopic organization) relation-
ships between input and output patterns, we applied representational
transformation analysis to the stimuli directly. We converted the 30 stim-
uli to grayscale, rescaled them to 10% (51 X 51 pixels), and reshaped
them into a 2601-pixel-length one-dimensional vector. We generated 15
“samples” of the same image by adding random Gaussian noise (from —1
to 1) to each so that we could perform the same cross-validation proce-
dure as was performed with the neural data in Experiment 1. There were
450 (30 X 15) images in total. Transformation matrices were computed
separately for each object and for each affine change (3 objects X 5
changes). Training was performed on 14 image “samples” and tested on
the remaining left-out image. Otherwise, the procedure was identical to
the one used for neural patterns. To investigate the effectiveness of the
transformations as a function of stimulus integrity, we performed this
analysis with six Gaussian noise levels (variance = 0.0, 0.01, 0.05, 0.1, 0.3,
and 0.5) added to the images.

Experimental design and statistical analyses. The sample size for Exper-
iment 1 was 14. This size sample was selected to be sufficient for multi-
voxel pattern detection using brief fMRI acquisition runs (Coutanche
and Thompson-Schill, 2012). All statistical tests were within-subject and
were conducted using scipy (Jones et al., 2001) or R (R Core Team, 2018).

Patterns were extracted from a large swath of lateral occipital cortex
(LOC). We aimed to be as agnostic as possible about the nature of the
representations on which the transformations operate. We therefore
used a large LOC ROI because it could encompass both retinotopic rep-
resentations and high-level visual representations. LOC is a high-level
object-selective region (Grill-Spector et al., 2001) that codes for some
visual features, such as shape (Cant and Goodale, 2007) and size (Konkle
and Oliva, 2012; Chiou and Lambon Ralph, 2016). The use of this ROI
optimized our ability to find any general transformations and could
produce several different interpretable outcomes.

The primary comparison was whether the predicted postchange pat-
tern and the true postchange pattern were the most similar, compared
with any of the four control analyses. Pattern similarity was computed
using Pearson’s correlation. Correlation and correlation distance are
among the most reliable similarity metrics for neuroimaging research
(Walther et al., 2016). The correlations were always Fisher z-transformed
for all analyses. To test for a difference between conditions (e.g., compar-
ing the predicted pattern correlation with the true pattern vs with the
wrong pattern), correlations were averaged by condition and by partici-
pant and compared using a paired ¢ test. To determine whether change
type (e.g., enlarge, rotate+60, etc.) affected the success of the transfor-
mations, we averaged correlations by condition, stimulus, and partici-
pant and conducted a repeated-measure ANOVA on the predicted
pattern correlation with the true pattern versus with the wrong pattern.

To assess the relationship between the initial pattern similarity and the
transformation prediction similarity, we calculated the correlation be-
tween rtransformatiun similarity and rpattern similarity for each partidpant and
compared the mean with zero using a one-sample ¢ test. Next, to better
accommodate the additional factors in our design, we used a linear
mixed-effects model (implemented by the Ime4 package in R) (Bates et
al., 2015). We used initial similarity as a fixed-factor predictor of trans-
formation similarity, and included stimulus, change type, run, and par-
ticipant as random intercepts. The model was fit by REML and ¢ tests
used the Satterthwaite approximation (implemented by the ImerTest
package in R) (Kuznetsova et al., 2017) for degrees of freedom and sig-
nificance level. We used a method of estimating marginal R? (i.e., vari-
ance explained by the fixed factor alone) outlined in Nakagawa and
Schielzeth (2013) and as implemented by the MuMIn package in R (Bar-
ton, 2018). Finally, we compared mean r and mean
Tpattern similariry USING  paired f test.

For the image analysis, a repeated-measures ANOVA was run on im-
age similarity (correlation) using analysis (True Change, Wrong Change,
Wrong Object) and variance as a predictor, with validation image (rather
than participant) treated as a random effect.

transformation similarity



8530 - J. Neurosci., October 3, 2018 - 38(40):8526 — 8537

Experiment 2: representational transformation analysis over
time with MEG

We applied representational transformational analysis to an existing
MEG dataset (Isik et al., 2014), which offers higher temporal resolution
over fMRI, to determine how early in visual processing these transfor-
mations occur. In this new domain, we were able to see the formation of
the transformations over time by measuring when in time the transfor-
mation matrices generate accurate predictions. Furthermore, we also
assessed the stages of the transformation by comparing the efficacy of the
transformation matrices when trained and tested at different points in
time. The MEG experiment has been described in detail previously (Isik
etal., 2014). We therefore only describe the essential features here.

Participants. The original study (Isik et al., 2014) tested 11 participants
(3 women) 18 years of age or older with normal or corrected-to-normal
vision using a variety of stimuli. From this dataset, we analyzed 8 partic-
ipants tested with consistent stimuli presentation conditions described
below. The Massachusetts Institute of Technology Committee on the
Use of Humans as Experimental Subjects approved the experimental
protocol. Participants provided informed written consent before the
experiment.

MEG recordings and data processing. The MEG scanner used was an
Elekta Neuromag Triux with 102 magnetometers at 204 planar gradiom-
eters, and the MEG data were sampled at 1000 Hz. The MEG data were
preprocessed using Brainstorm software (Tadel et al., 2011). First, the
signals were filtered using Signal Space Projection for movement and
sensor contamination (Tesche et al., 1995). The signals were also band-
pass filtered from 2100 Hz with a linear phase finite impulse response
digital filter to remove external and irrelevant biological noise, and the
signals were mirrored to avoid edge effects of bandpass filtering. Each
sensor’s activity was averaged within each 5 ms time window to yield
nonoverlapping bins used in the analysis.

Stimuli. Stimuli were computer-generated images of six objects (bas-
ketball, bowling ball, football, adult head, child head, hat). The objects
were presented in isolation at three sizes (2°, 4°, and 6° of visual angle in
diameter) in the center of the visual field. Only the largest-sized 6° diam-
eter images were shown at three positions (centered, and *3° vertically).
All images were presented in grayscale on a 48 cm X 36 cm display, 140
cm away from the subject; thus, the screen occupied 19° X 14° of visual
angle. The largest, central image (6°) was chosen as the “prechange” state
of the transformation from which the object could either become “small”
(4°) or “tiny” (2°), or move “up” (3° vertically) or “down” (—3° verti-
cally) in the final state of the transformation. Thus, there were four affine
change types.

Experimental design and procedure. Images were presented for 48 ms
with 704 ms interstimulus interval. Image order was randomized for each
experiment, and each stimulus was repeated 50 times. Participants per-
formed a fixation task while viewing images presented two in a row, in
which they indicated whether the fixation cross was the same color or
different colors when each image appeared. This ensured central fixation
and attention.

Channel selection. Because the operations underlying the affine view-
point changes used in this experiment were hypothesized to be visual in
nature, only data from occipital channels were used (72 channels: 24
magnetometers and 48 gradiometers).

MEG transformation analysis. The representational transformation
analysis was applied as described above, except as follows. Transforma-
tion matrices were now computed separately for each participant and for
each time point (5 ms nonoverlapping bins). MEG data were segmented
into 5 folds (each containing 10 stimulus trials): four training folds and
one left-out, test fold (40 trials in the training data). Each channel com-
posing the prechange pattern was used as an individual predictor of each
channel composing the postchange patterns. For all analyses, we applied
representational transformation analysis across different stimuli (e.g.,
transformations were derived using all combinations of objects for train-
ing and validation objects).

A linear model was fit with a 72 [channels] X 40 [trials] matrix of
predictors, X (and manually fit intercept) to predict a 72 [channels] X 10
[trials] matrix of dependent variables, Y. The solution, B, in this case, isa
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72 X 72 transformation matrix. Once this transformation matrix was
computed, it was applied to the prechange pattern of the validation stim-
ulus in the remaining fifth testing fold by taking the dot product of the 72
[channels] X 10 [trials] matrix of predictors and the n X n transforma-
tion matrix to yield a 72 [channels] X 10 [trials] predicted postchange
pattern. This process was repeated for every time point (from 200 ms
before stimulus onset to 500 ms after stimulus onset; 140 time points
each).

We also assessed the stages of the transformation by comparing the
efficacy of the transformation matrices when trained and tested at differ-
ent points in time. For example, if the computations occurring early in
visual response differed from those occurring later, then an early-
response transformation matrix should predict early response patterns
but not late-response patterns, and a late-response transformation ma-
trix should predict late response patterns but not early-response patterns.
The procedure for this analysis was identical to the transformation anal-
ysis described above, except that it was repeated for each time point
pairing (each time point served as the training and testing time point;
19,600 pairs total). The analyses were computed on 32-core cluster over
several weeks.

Control analyses and permutation testing. We conducted the four con-
trol analyses (Wrong Change, Wrong Object, Mismatched Labels,
Scrambled Transformation) exactly as described for Experiment 1, ex-
cept for as follows: In the Mismatched Label and Scrambled Transforma-
tion permutation approaches, only 50 permutations were conducted.
These analyses were only conducted for transformations that were
trained and tested on the same time point.

Transformation similarity versus initial pattern similarity. We com-
pared correlation between prechange versus postchange patterns (i.e.,
initial pattern similarity, ,,er simitaricy) a0d the correlation between the
predicted postchange pattern and the true postchange pattern (i.e., the
True Change transformation prediction similarity, r,,a.ormation simitarity)
in exactly the same way as described for Experiment 1, except for as
follows: We used the mean rpattern similarity and rtmnsformatian similarity
around the peak correlation (150—-200 ms) to compute the initial pattern
similarity and transformation prediction similarity. This allowed us to
look at the transformation prediction similarity as a function of initial
pattern similarity in the same manner as Experiment 1. There were 120
pairs of patterns (6 stimuli X 4 change types X 5 runs) for each of the
eight participants.

Experimental design and statistical analyses. The experimental design
and statistical analyses were exactly the same as Experiment 1, except for
as follows. The sample size for Experiment 2 was 8. This was the sample
available to us for analysis (because Experiment 2 was run on an existing
dataset), but it is consistent with other MEG studies investigating object
recognition. Patterns were extracted all 72 occipital channels. This was to
best align with Experiment 1.

The primary comparison was whether the predicted postchange pat-
tern was most similar to the true postchange pattern compared with
those for other objects, and how this relationship unfolded in time. Pat-
terns were obtained for each time point, and pattern similarity was com-
puted using Pearson’s correlation. The correlations were always Fisher
z-transformed for all analyses. To evaluate the difference between the
predicted pattern correlation with the true pattern versus with the wrong
pattern, correlations were computed separately for each time point. At
each time point, correlations were averaged by condition and by partic-
ipant, and compared using a paired ¢ test (e.g., comparing the predicted
pattern correlation with the true pattern vs with the wrong pattern).

For the temporal generalization analysis, paired t tests were used ex-
actly as described above for all pairs of time points. To correct for mul-
tiple comparisons on the off-diagonal, significance level was set at p <
0.005, and we plotted only clusters with =10 adjacent significant time
points.

The relationship between transformation prediction similarity as a
function of initial pattern similarity was assessed in exactly the same
manner as Experiment 1.
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Predictive success of representational transformation analysis. A, The Pearson correlation (Fisher z-transformed) between the predicted postchange pattern and the True Change

pattern (red), Wrong Change pattern (blue), and Wrong Object pattern. Control analyses’ (gray) correlations between the true postchange pattern and the patterns generated by permuting the
training labels (Mismatched Labels) and permuting the transformation coefficients (Scrambled Transformation) are also plotted. B, The correlation between the predicted postchange pattern and
the True Change pattern (red) and Wrong Change pattern (blue) for each different affine change. Individual points correspond to individual participant means (n = 14). Boxes represent quartiles

1-3, and whiskers indicate =2 SDs.

Results

Experiment 1: representational transformation analysis

We found a main effect of analysis (F s, = 64.71, p = 2 X
1071, "r;; = 0.83, repeated-measured ANOVA) (Fig. 2A),
wherein the transformation matrices predicted postchange pat-
terns that were more similar to the true postchange pattern com-
pared with any of the control four analyses (p values <3.26 X
10 ~°, paired t tests). Critically, the predicted pattern was more
similar to the true postchange pattern compared with a Wrong
Change postchange pattern for the same object. These results
indicate that there are transformations that link object represen-
tations as the object undergoes a viewpoint change. Furthermore,
these transformations can be derived from one object and applied
to a novel object to generate a pattern of brain activity that ap-
proximates the postchange representation of the novel object. If
transformations are mediated simply by the similarity between
the prechange and postchange perceptual states, then transfor-
mations should not have generalized to novel objects.

Among the control analyses, Scrambled Transformation per-
mutation control analysis produced the smallest correlation be-
tween prechange and postchange patterns (7. 4mpreq = 0.0001 =
0.00), and all of the other control analyses produced correlations
that were greater than this baseline (7,,,,,g change = 0.014 % 0.006,
rwrong object = 0.009 = 0012’ Tmismatched labels — 0.014 = 0006’ P
values = 0.0153, Cohen’s d values > 0.76, paired t tests), and no
significant pairwise differences among these three control analy-
ses (p values > 0.16, Cohen’s d values < 0.39, paired t tests).
These results suggest that some information may be preserved
in these control patterns (compared with the absolute baseline
of Scrambled Transformation). For example, object identity
information may account for the above-baseline correlations
in the Wrong Change and Mismatched Label analyses. But
importantly, the correct transformation is far better at ap-
proximating the true pattern of activity than any of these
sources of information alone.

When we compared the correlations between the predicted
postchange pattern for patterns for the True Change and for the
Wrong Change across all affine changes, the results were consis-
tent, as is clear from Figure 2B. We confirmed this statistically
using a repeated-measure ANOVA, which showed that there was
no interaction between change type and analysis type (F(,s,, =
0.64, p = 0.64, nlf = 0.05). Thus, the transformations were
equally effective across all affine changes.

Comparing representational transformation analysis to
initial pattern similarity

To further investigate the nature of these transformations, we
asked how much the success of our transformations depended on
initial pattern similarity between the prechange and true
postchange patterns. A similarity-based account of the relation-
ship between prechange and postchange representations predicts
that the two states should be highly correlated and, moreover, this
correlation should explain the success of the transformations.
These types of relationships can appear as representational struc-
ture in representational similarity analyses (Kriegeskorte et al.,
2008a), whereby classes of objects are represented similarly re-
gardless of changes in viewpoint or exemplar. A high correlation
could also be due to limitations of fMRI acquisition: the pre-
change and postchange patterns were formed by BOLD response
measured close in time during the experiment (3966 ms inter-
stimulus interval).

We therefore directly compared transformation prediction
similarity (the correlation between the predicted postchange pat-
tern and the true postchange pattern), 7,,sormarion simitarity and
the initial pattern similarity, 7.0 simitaris AS @ rough measure,
we first correlated rtransformatian similarity and rpattern similarity (bY cor-
relating these values for each participant and comparing the av-
erage correlation to zero with a one-sample t test). We found that
the correlation between rtmnsformation similarity and rpattern similarity
was significantly above zero (r = 0.17 % 0.15, t(,3, = 4.22, p =
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Representational transformation analysis applied to stimulus images directly. Gaussian noise with different variance was added to the images to create multiple samples of the same

image for cross-validation. 4, The Pearson correlation (Fisher z-transformed) between the predicted postchange image and the True Change image (red), Wrong Change image (blue), and Wrong
Objectimage (gray). Points represent the average across stimulus type and affine change type. Error bars indicate 95% Cls. B, An example of the type of image generated by the transformation. The
“enlarge” transformation was trained on the manmade stimulus (top row, Gaussian noise with variance = 0.03) and applied to the “natural” validation image. The transformation failed to
generalize, as evident by the “enlarged boot” predicted image. This was compared with the True Change and the Wrong Object.

0.001, Cohen’s d = 1.05). This positive relationship was further
confirmed by a linear mixed-effects model, which can better ac-
commodate the other factors (run, stimulus, change type, partic-
ipant) as random effects. From this, we found that 7,,se simitariy
positively predicts 7, formation simitariry (b = 0.0995, = 8.283,p =
2 X 107'%), although it only accounted for 2.20% of the variance
(Rz) Criticaﬂ% rtrunsformation similarity was greater than rpattem similarity
(rtmnsformation similarity =0.11=x 004’ rpattem similarity =0.04 = 008)
ta3) = 2.43,p = 0.0302, Cohen’s d = 0.65, paired ¢ test), indicat-
ing that applying the transformation to the prechange pattern
made it more similar to the true postchange pattern.

Overall, this small but significant relationship between trans-
formation similarity and pattern similarity indicates that percep-
tual states are neither linked exclusively by similarity-based
association nor through transformations. These results show that
mere similarity between perceptual states does not explain the
success of the transformation analysis and that transformations
yield a better approximation of the underlying representation.

Can transformations be learned from raw images?
Finally, an alternative account of our results is that the transfor-
mations are simply linking one retinotopic pattern to another
because retinotopic organization is known to exist all over LOC.
Although we did not measure retinotopic organization directly in
this study, one can understand this alternative account by think-
ing of the activation patterns as “image-like” representations,
rather than high-level object representations. Instead of a general,
abstract “enlarge” transformation, the transformation may work
by simply learning that if voxel # is active in the input pattern, the
immediate voxels that surround voxel n should be active in the
output pattern. In this case, an input pattern for “moth” would
still yield “big moth” and an input pattern for “boot” would still
yield “big boot,” but the transformation would be based on low-
level, image-like (arising from retinotopic organization) rela-
tionships between input and output patterns.

A strong test of this alternative account is to determine what
happens if we run the same analyses on the raw images them-

selves: can our representational transformation analysis learn the
seemingly simple affine image transformations from the raw im-
ages directly, and if so, does such learning generalize to a novel
stimulus input? That is, if a representational transformation anal-
ysis can learn the relation between the raw images of “moth” and
“big moth,” can this be applied directly to “boot” to yield an
output of “big boot?” If so, it becomes more likely that the
transformations are due to image information encoded in
image-like representations. If not, it suggests that our analyses
learn transformations based on more abstract and high-level
representations.

We found a main effect of analysis (7. crange = 0.55 = 0.24,
rWrortg Change =031 £0.13, rWrong Object =0.55=* 025) (F(2,4) =
15.89, p = 0.0125, 1, = 0.89, repeated-measures ANOVA) (Fig.
3A, red vs blue). There was a main effect of variance (F, ,, =
8393.16, p = 0.0001, n; = 1.0, repeated-measures ANOVA). We
also found an interaction between analysis and variance (F(, 4 =
16.46, p = 0.0117, n; = 0.89).

Combining 15 samples at each of the 6 variance levels, we
replicated the finding that the predicted postchange image best
matched true postchange image (True Change) compared with
the wrong postchange images (Wrong Change) (71, change =
0.55 % 0.24, T'yyong Change = 0-31 = 0.13, f(g0) = 17.196, p = 4.9 X
10 7%, Cohen’s d = 1.82, paired ¢ test) (Fig. 3A, red vs blue).

However, in strong contrast to our neural results that showed
general transformations that produced predicted patterns that
matched both the specific affine change and specific object, the
predicted postchange image was just as similar to a different
object that had undergone the same change (Wrong Object),
averaged across all levels of noise (77, change = 0.55 = 0.24,
Twrong Object = 0-55 £ 0.25, £(39) = 0.011, p = 0.9914, Cohen’s
d < 0.01) (Fig. 3A, red vs gray).

Thus, the image-based transformations were learning some-
thing different from the neural transformations. Unlike with
neural patterns, the postchange predicted images are readily in-
terpretable (because they should be images of something). There-
fore, we investigated the predicted transformed images directly to
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diction of a new representation. Fur-
thermore, these transformations do
not rely on image-like representations
alone, and therefore reflect general
transformations between high-level ob-
ject representations.

Experiment 2: the time course of

representational transformation

To determine the time course of the trans-
formation, we derived and applied the
transformation matrix at the same time
point. From ~90 to 300 ms after stimulus
onset, and then again after 450 ms, trans-
formation matrices computed from five
different stimuli could predict postchange
patterns for a new stimulus undergoing
the same affine change, compared with
the Wrong Change patterns (Fig. 4). The
Wrong Change correlations were also
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Figure 4.

gray) are also plotted. For the control analyses, shaded areas represent 95% Cl.

determine whether we could better understand this discrepancy.
Instead of learning an abstract affine transformation linking the
two training images, the transformation produced the post-
change image for whatever stimulus upon which it had been
trained. For example, a transformation for “enlarge” trained on
the boot stimulus, only produced a “big boot” predicted image,
regardless of the validation image to which it was applied
(Fig. 3B).

Because all stimuli were used as True Change validation stim-
uli and Wrong Object comparison stimuli, the average correla-
tion for True Change and Wrong Object was basically the same.
That s, the correlation between “bigboot” and “big moth” would
serve as the True Change correlation if “moth” were the valida-
tion image and the correlation between “big boot” and “big
greeble” would serve as the Wrong Object correlation. But the
opposite would be true if “greeble” were the validation image.
This resulted in the predicted postchange image being just as
similar to the wrong object as the true object. These results show
that the regression used in our transformation analysis (L2-
regularized linear regression) fails to learn the affine relationship
between these 2D images at the pixel level.

Overall, these results show that the transformations between
representations of objects that have undergone a common affine
change generalize across different objects. This is the first dem-
onstration showing that a transformation that changes existing
representations can be isolated; and when applied to a novel
representation, the transformation produces an accurate pre-

s p = 0.0001

The time course of transformations. The Pearson correlation (Fisher z-transformed) between the predicted pattern
and True Change pattern (red) and the Wrong Change pattern (blue) is plotted as function of time. Solid gray vertical bar represents
the onset of the stimulus. Two-tailed paired ¢ tests between True Change and Wrong Change were computed at each time point,
and significant differences (p < 0.05) between the two conditions are plotted below the graph. Shaded areas for True Change and
Wrong Change represent 95% (I of the within-subject mean difference (n = 8). Control analyses’ correlations between the
predicted pattern and Wrong Object pattern (light gray), the true postchange pattern, and the patterns generated by permuting
the training labels (Mismatched Labels, gray) and permuting the transformation coefficients (Scrambled Transformation, dark

above zero (similar to Experiment 1), sug-
gesting that some information may be
preserved in these control patterns (e.g.,
object identity information), but impor-
L tantly, the correct transformation was far
better at approximating the true pattern
of activity.

Therefore, using a different imaging
modality, different stimuli, and different
affine changes, representational transfor-
mation analysis yielded results that dem-
onstrate general transformations among
different objects that have undergone an
affine change. These results also show that
the transformations are successful at pre-
dicting novel representations very soon
after the presentation of an image and then again somewhat later
in processing.

Comparing representational transformation analysis with
initial pattern similarity

To assess whether the success of our transformations depended
on initial pattern similarity between the prechange and true
postchange patterns, we computed the mean correlation between
prechange versus postchange patterns (i.e., initial pattern simi-
larity, 7parern simitariry) from 150 to 200 ms and compared it with
the mean correlation between the predicted postchange pattern
and the true postchange pattern (i.e., transformation prediction
SIMilarity, 7 amsformation simitariry) from 150 to 200 ms. We looked at
prediction similarity as a function of initial pattern similarity for
120 pairs of patterns (6 stimuli X 4 change types X 5 runs) for
each of the 8 participants.

FirSt’ we ﬁI'St Correlated rtransformation similarity and rpattern similarity
(by correlating these values for each participant and compar-
ing the average correlation to zero with a one-sample f test). We
found that the correlation between 7, mation simitariry and
Toattern similarity Was significantly above zero (r = 0.25 * 0.23,
t) = 2.911, p = 0.0226, Cohen’s d = 2.26). This positive rela-
tionship was further confirmed by a linear mixed-effects model.
From this, we found that 7,0, imisarie, POSitively predicts
Tiransformation similarity (b = 0.3982, t = 8.742, p = 229 X 10 '¥),
although it only accounted for 8.26% of the variance (R?).

Critically, was greater than

rtmrtsformation similarity rpattern similarity
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(rtmnsformation similarity =034 =* 010’ rpattem similarity =0.16 = 006)
t;) = 10.98, p = 1.15 X 10 ">, Cohen’s d = 3.88, paired  test),
indicating that applying the transformation to the prechange pat-
tern made it more similar to the postchange pattern.

Overall, across changes in viewpoint, these results show that
mere similarity between perceptual states does not explain the
success of the transformation analysis.

Stages of transformation

The transformations appeared to produce accurate patterns at
two different points in time: an early interval from ~100 ms to
300 ms and a late interval at ~450 ms. Previous studies have
found significant classification accuracy at early intervals (Carl-
son et al., 2013; Isik et al., 2014), with neural decoding ~100 ms
correlated with V1 and decoding between 250 and 500 ms corre-
lated with inferior temporal (Cichy et al., 2014). Do these two
different intervals correspond to two different computational
stages in our study?

To answer this question, we applied representational transfor-
mation analysis across time points: the transformation was com-
puted based on training data drawn from one time point and
tested on test data from all other time points (including test time
points occurring before the training time point). This approach is
a type of temporal generalization method (King and Dehaene,
2014), except we computed transformations rather than training
a classifier at one time point and applying it at the others. (For
object representations, there is very little temporal generalization
for invariant representations, e.g., Isik et al., 2014). Critically, can
the transformations trained at the early interval predict patterns
at the late interval, or vice versa?

Several key results are clear from inspecting Figure 5, which
plots the difference between the True and Wrong pattern corre-
lations. For direct comparison, the diagonal reflects the signifi-
cance levels from Figure 4 (asterisks along the diagonal in Figure
5 denote significance at p < 0.047, as shown in the colorbar in
Figure 4), but to correct for the multiple comparisons at all other
time points, only clusters of 10 or more adjacent, significant (p <
0.005) time points are displayed. First, the transformations are
most effective from ~120 to 200 ms. Second, there appear to be
two distinct stages: first from 120 to 200 ms and from 220 to 320
ms. Finally, a transformation produced at a particular stage is
only effective within a narrow interval around the time at which it
was generated. For example, the transformations trained at the
first stage are effective in the first stage (evidenced by the dark red
positive clusters) but produce patterns that are worse than the
wrong patterns during the second stage (evidenced by the blue
negative clusters directly above the dark red cluster). These re-
sults could arise from inhibition of return or an adaptation effect.
As the transformation occurs, the intermediate stages may be
actively suppressed, so that if one trains on an earlier time point
and tests on a later time point (or vice versa), the true postchange
pattern at the later time point will contain an attenuated or even
opposing signal. This would decrease the similarity between the
predicted postchange pattern and the True postchange pattern.
At that point, any invariant object information among the pat-
terns may drive the similarity, causing the Wrong patterns to be
more similar because they contain information about the same
object.

The same pattern of results was found for the second stage: the
transformations trained at the second stage are effective during



Ward et al. @ Transforming Representations

the second stage, and produce worse patterns during the first
stage (evidenced by the blue cluster directly below the second
stage clusters, and to the right of the first stage cluster).

Although the earliest time points at which the transformation
was effective (~90-120 ms; Fig. 4) did not produce a cluster that
survived multiple comparisons correction, the results plotted in
Figure 5 do suggest that the transformations occurring at the
earliest time points may be different from those occurring imme-
diately afterward: when the transformations are trained at these
early time points and tested at 150 ms, they produce a significant
negative cluster. This on-diagonal pattern of results is consistent
with the pattern of results produced by MEG decoding of inferior
temporal, whereas decoding of V1 produced off-diagonal tempo-
ral generalization (Cichy et al., 2014).

Overall, these results show strong evidence for two distinct
stages of transformation, and possibly even a third that occurs at
the earliest stage of visual processing.

Discussion

It has long been thought the visual system applies a set of general
procedures to visual representations to extract properties and
relations not explicit in the visual input itself. These “visual rou-
tines” are operations that act on base representations to produce
incremental representations (Ullman, 1984). While these opera-
tions typically encompass early visual analyses, such as intersec-
tion and boundary tracking, our results show that a similar
mechanism exists for affine visual changes, such as viewpoint
change. While the brain must accommodate “online” changes
that occur in real time (e.g., integrating a visual scene across
saccades or tracking moving objects), it is also important to link
object state representations, such as before and after an object
undergoes a change. Using a novel method, representational
transformation analysis, our study isolated general transforma-
tions, whereby a transformation function can be applied to a
brain representation of an object to transform it into the repre-
sentation of the object after it itself has undergone a change in
viewpoint. This shows that operations are preserved across stim-
uli and that the prechange and postchange representations are
not linked simply through similarity.

On the one hand, it is extremely important to recognize ob-
jects across such changes. Although we store in memory individ-
ual “snapshots” of an object as our view of it changes (Biilthoff
and Edelman, 1992; Edelman and Biilthoff, 1992; Tarr, 1995),
there is extensive evidence of viewpoint-invariant coding of ob-
jects across changes in position, size, or viewpoint (DiCarlo and
Cox, 2007). This property of neuronal coding increases along the
ventral visual pathway (Rust and DiCarlo, 2010), including LOC
(e.g., Grill-Spector et al., 1999). On the other hand, it is also
extremely important to recognize when an object has changed in
some way, such as during a viewpoint change: just as we would
never mistake a chair for a different chair as our viewpoint
changes, we would also never mistake a side view for top view just
because we recognize the chair. Thus, invariant object coding
does not obviate the need for coding of specific changes in view-
points. Our results show that the transformation from one view-
point to another applies across objects.

In this study, we have focused on affine changes, such as those
we experience for certain viewpoint changes. But transforma-
tions may be important for changes more generally. A number of
recent studies have shown that there is at least a coarse represen-
tation of space in LOC (e.g., MacEvoy and Epstein, 2007; Carlson
et al., 2011), which is consistent with the view that object repre-
sentations are selective for both position and objects (Edelman
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and Intrator, 2000, 2003; Kravitz et al., 2008). However, under
this view, there are multiple position-specific representations for
each object that do not need to be transformed to be compared.
Our results may help reconcile position-dependent and position-
independent views by showing that there are transformations
specific to a particular position change that act on object repre-
sentations generally. It has been proposed that the computations
that produce invariant object recognition and the computations
involved in transforming object representations, such as those
demonstrated in this study must operate simultaneously (Cichy
et al., 2011). The time course of transformation we found in the
current study closely resembles the time course of invariant rep-
resentation found in Isik et al. (2014), lending some empirical
support for this view. Beyond the relevance of transformation for
the coding of objects and space, we are also surprisingly good at
recognizing when a common transformation has occurred to dif-
ferent objects (Schmidt and Fleming, 2016), such as when a towel
or aluminum can have been twisted. Rather than due to high-
level inference, our ability to appreciate such changes may arise
from visual processing (Chen and Scholl, 2016).

What is the nature of the computations captured by the trans-
formation? It is important to note that our method of finding the
transformation (e.g., regularized linear regression) is unlikely to
be the method by which the neuronal population achieves the
transformation, nor is it a direct algorithmic explanation (per
Marr, 1982). The multivoxel representations our transforma-
tion analysis relies on are themselves just approximations of
the true neural representations, generated by statistical tests
(i.e., GLM on fMRI signal), and accordingly, our method of
linking the representations can only approximate the opera-
tions. Thus, our approach is abstracted from online, neural
transformations. However, the strength of our results comes
from demonstrating the transformations obtained from one
set of representations can be applied to a novel input to gen-
erate a new, accurate representation.

Furthermore, the success of our method to learn transforma-
tions between neural patterns and the failure of our method to
learn transformations between raw images suggest some possibil-
ities about the nature of the computations. How is it that an
analysis that fails to capture simple affine changes between im-
ages could capture an abstract, general relationship between
high-dimensional object representations in the brain?

First, although it is trivial to apply an affine change to an image
on a computer, it is far from trivial to learn a transformation
function from prechange and postchange image pairs. While one
can easily create a function to rotate an image in-plane, reverse
engineering in-plane rotation is different and difficult, even when
the problem space is very constrained, such as trying to deter-
mine the angle of rotation between two images (there are mul-
tiple approaches to solving this, ranging from registering the
images through incremental steps until the error between
them is minimized, to FFT-based approaches, to feature-
detection approaches, either by finding edges and corners or by
finding high-level relationships among items/features in the im-
ages). Learning functions from raw data alone is extremely com-
plex. In neuroscience, this problem has been approached using
encoding models (e.g., Naselaris et al., 2011), in which features of
the raw data (usually natural images of scenes) are used to predict
the activity of single voxels in the brain. In contrast to the trans-
formations in the present study which link object representations
before and after a change, encoding models link brain activity to
the stimulus and can therefore be used to reconstruct a stimulus
(Nishimoto et al., 2011). However, encoding models are not de-
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signed to learn functions that occur in the world from the raw
images, only which features reliably cause a certain pattern of
activity. To learn functions from raw data alone, pioneers in this
domain rely on sophisticated computational search algorithms
(which have been used to uncover several laws of physics from
scratch, directly from data) (Schmidt and Lipson, 2009) and deep
neural networks (which have been shown to learn “intuitive”
models of the physical world) (Byravan and Fox, 2016). There-
fore, it is unlikely that the computations captured by the trans-
formations operate directly on image-like representations.

Second, the primary function of the brain is to adaptively
interact with the world, which requires both representing and
transforming incoming information. Therefore, LOC represents
information that has already been transformed as it has been
processed through the early visual system. Retinotopic represen-
tations are extremely high-dimensional, and different points in
this high-dimensional space represent each distinct view or en-
counter of an object. Furthermore, different objects may activate
overlapping regions in this space, making the representations
extremely intertwined and not linearly separable (DiCarlo and
Cox, 2007). The function of the visual system is to change these
“tangled” representations into more distinguishable forms, for
which a linear decision boundary could be established eventually
(e.g., to recognize one object from another). Linear classification
of brain patterns has become ubiquitous in cognitive neurosci-
ence (Lewis-Peacock and Norman, 2014), and there is evidence
showing that patterns can be combined linearly to predict more
sophisticated representations (e.g., in the domain of object and
scene recognition) (MacEvoy and Epstein, 2009, 2011) and in the
domain of concept formation (Baron et al., 2010; Baron and
Osherson, 2011). Just as deep neural networks must transform
pixel representations to representational forms that are more
general and abstract, the visual system must too accomplish this
in some way (Kriegeskorte, 2015; Yamins and DiCarlo, 2016).
This visual “preprocessing” of information most likely consists of
complex, nonlinear computations, which our method takes ad-
vantage of to produce general linear transformations that distin-
guish both change type and object type. We were successful at
isolating the transformations for simple affine changes for a small
number of objects, but it may be necessary to use more sophisti-
cated models to investigate other more abstract and fascinating
transformations, such as the transformations that give rise to the
perception of animacy (Heider and Simmel, 1944) or causal his-
tory (Leyton, 1989).

Transformations are not only an integral part of our visual
experience, but also of much of cognition. We expect that the
representational transformation analysis presented here will be
useful to many researchers investigating the representational
structures and computational procedures that operate on those
structures.
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