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Research Article

The perceptual system partitions and organizes the 
world into behaviorally relevant objects and groups. 
Many well-characterized Gestalt principles (Brooks, in 
press; Palmer, 1999; Wagemans, Elder, et  al., 2012; 
Wertheimer, 1924/1950) account for some perceptual 
organization. But most visual objects in the environment 
comprise several features—for example, cars on the road 
come in different shapes, colors, and sizes. Quantifying 
how single features contribute to object formation—let 
alone quantifying the combined effect of multiple fea-
tures—remains a perennially unsolved problem (Palmer 
& Beck, 2007; Wagemans, Elder, et al., 2012).

One way to understand how multiple features drive 
object formation is to measure how well the perceptual 
system parses certain features, then experimentally set 
those features against each other in a task designed to 
measure perceptual organization, such as feature group-
ing. However, because the goal of perception is to gener-
ate behaviorally relevant representations, different 
information will be selected and inhibited for different 
purposes (Carrasco, 2011; Chun, Golomb, & Turk-
Browne, 2011). Therefore, any test of multifeature inter-
action must also consider the task relevance of the 

features, especially since simply attending to features can 
change the perception of their strength and appearance 
(Carrasco, Ling, & Read, 2004; Fuller & Carrasco, 2006).

To test whether the quality of perceptual feature rep-
resentations is indicative of how the perceptual system 
partitions information into visual elements, we obtained 
a neural measure of feature representation and a percep-
tual measure of feature grouping. We first scanned par-
ticipants while they viewed single objects that varied 
along three feature dimensions: shape, color, and orien-
tation. We used multivariate pattern classification to char-
acterize neural discriminability of object features in lateral 
occipital cortex (LOC), a high-level visual area sensitive 
to several Gestalt grouping phenomena, such as group-
ing of contour lines (Altmann, Bulthoff, & Kourtzi, 2003; 
Kourtzi, Tolias, Altmann, Augath, & Logothetis, 2003) and 
configural superiority (Kubilius, Wagemans, & Op de 
Beeck, 2011). After scanning, participants performed an 
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Abstract
How does the neural representation of simple visual features affect perceptual operations, such as perceptual grouping? 
If the strength of feature representations in the brain is indicative of how the perceptual system partitions information 
into visual elements, then identifying the underlying neural representation may determine why things look the way 
they do. During functional MRI, participants viewed objects that varied along three feature dimensions: shape, color, 
and orientation. Afterward, participants performed an independent perceptual-grouping task outside the scanner to 
measure the strength of feature grouping. In lateral occipital cortex, neural feature discriminability, characterized using 
functional MRI multivariate pattern classification, positively predicted feature grouping strength: The more distinct the 
neural representations of a particular feature, the stronger the grouping was for that feature outside the scanner. Thus, 
variation in neural feature representation can be quantified to predict perceptual organization.
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independent behavioral task outside the scanner, the rep-
etition-discrimination task (Palmer & Beck, 2007), 
designed to test how strongly different features perceptu-
ally group together when placed in competition with 
irrelevant features. The relative difference in performance 
when irrelevant features are compatible or incompatible 
with relevant features provides a measure of feature 
grouping strength (Palmer & Beck, 2007). By relating the 
measure of neural discriminability to the independent 
measure of feature grouping strength, we asked whether 
relevant object-feature representation could be quanti-
fied with functional MRI (fMRI) to predict basic percep-
tual operations, such as grouping.

We hypothesized that object features would become 
more neurally discriminable when they were relevant to 
participants in the scanner ( Jehee, Brady, & Tong, 2011) 
and that features that were more neurally discriminable 
when relevant would group more strongly even in tasks 
performed outside the scanner. Specifically, high within-
feature similarity and low between-features similarity 
should benefit neural classification and perception 
(Duncan & Humphreys, 1989), enabling fast detection of 
relevant features, as well as making the features more 
robust to conflicting feature information.

Method

Participants

Twenty-four paid participants (10 females, 14 males) 
gave written informed consent in compliance with guide-
lines of the Yale University Human Subjects Committee. 
This sample size was similar to that used in previous 
studies in our lab that link fMRI signals to behavior (e.g., 
Moore, Yi, & Chun, 2013; Ward, Chun, & Kuhl, 2013). 
Participants had normal or corrected-to-normal vision. 
Three additional participants were excluded from the 
study before data analysis (1 as a pilot subject, 1 for lack-
ing subsequent behavioral data, and 1 for structural 
abnormalities).

Apparatus

We acquired fMRI data at the Magnetic Resonance 
Research Center at Yale University, on a 3T Siemens Trio 
scanner equipped with a standard 12-channel head coil. 
T1-weighted anatomical images were acquired using a 
3-D magnetization-prepared rapid-acquisition gradient 
echo (MPRAGE) sequence—repetition time (TR) = 2,530 
ms, echo time (TE) = 2.77 ms, time to inversion = 1,100 
ms, voxel size = 1 × 1 × 1 mm, matrix size = 256 × 256 × 
256. T2*-weighted images sensitive to blood-oxygen-level-
dependent (BOLD) contrasts were acquired using a gradi-
ent-echo echo-planar pulse sequence (TR = 2,000 ms, 

TE = 25 ms, voxel size = 3.5 × 3.5 × 4 mm, matrix size = 
64 × 64 × 34). Stimuli were presented using PsychoPy 
(Peirce, 2007) and displayed through an LCD projector on 
a rear-projection screen. Responses were recorded using 
a four-button fiber-optic response-pad system.

Stimuli

Stimuli were 27 images of striped geometrical items that 
varied by color (red, aqua, purple), shape (square, circle, 
triangle), and stripe orientation (120° diagonal, vertical, 
and 60° diagonal). To reduce low-level adaptation, we 
alternated the phase of the stripes every trial. The images 
measured 512 × 512 pixels. Images were presented at the 
center of the screen and subtended approximately 12° × 
12° of visual angle.

Design and procedure

The experimental session included eight experimental 
scan runs (5 min 16 s each), followed by a behavioral 
perceptual-grouping test outside the scanner. In the scan-
ner, participants were instructed before each run to per-
form one of four tasks while viewing the stimuli: (a) 
passive viewing, (b) indicating the color of the stimuli, 
(c) indicating the shape of the stimuli, or (d) indicating 
the orientation of the stripes of the stimuli. The task for 
the first two runs was always passive viewing to mini-
mize attention to specific features (i.e., before partici-
pants were instructed to deploy specific feature-based 
attention). After the two passive-viewing scans, partici-
pants completed one scan for each task (color, shape, 
orientation) and then the second scan for each task in the 
reverse order (two scans of each task total). The task 
order was counterbalanced every 6 participants. Only 
scans in which participants performed an active task 
were used for the analysis.

Across all eight runs, participants saw 1,626 total trials. 
The sequence of trials was a predesigned Type 1 Index 1 
27-element sequence based on Aguirre’s (2007) continu-
ous carryover design. This sequence is first-order counter-
balanced (including repetition of elements) such that 
every item precedes (and follows) every other item. This 
permits measurement of the direct effect of each stimulus, 
independent of carryover effects from the other stimuli. 
The entire sequence included 28 repetitions of 27 items 
(plus one extra presentation of 1 item; 757 total), with 56 
instances in which the screen was blank for 3,000 ms (to 
introduce jitter into the sequence). The sequence was 
repeated twice across the experiment. On experimental 
trials, each item was presented for 1,400 ms followed by 
a 100-ms blank screen (Fig. 1a). Participants indicated the 
task-relevant feature of each item by pressing a button-
box key with their right index, middle, or ring finger.
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After all eight scans were completed, participants per-
formed a perceptual-grouping task outside the scanner 
using the same items. The repetition-discrimination task 
(Palmer & Beck, 2007) measures perceptual-grouping 
strength among features. Displays contained a single row 
of nine items drawn from the same stimuli used in the 
scanner tasks. These items alternated between two values 
in one feature dimension (e.g., circle and triangles in the 
dimension of shape), except for a consecutive pair in 
which the same feature value repeated (e.g., two trian-
gles; Fig. 1b). Participants indicated what feature value 
repeated. However, in addition to the alternation between 
relevant features, a task-irrelevant feature dimension 

(such as color) served as an orthogonal grouping factor. 
On compatible trials, the target pair (in this example, two 
triangles) could have the same color (both red); thus, the 
orthogonal grouping factor (color) biased the target to be 
perceived as part of the same perceptual group (Fig. 1b, 
top row). On incompatible trials, the two items in the 
target pair could have different colors (purple and red); 
thus, the orthogonal grouping factor biased the target to 
be perceived as part of two different groups (Fig. 1b, bot-
tom row).

The repetition-discrimination task had three blocks, 
containing 288 trials each (144 compatible trials and 144 
incompatible trials), totaling 864 trials. For each block, 
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Fig. 1. Paradigm of the scanner tasks and paradigm and results for the repetition-detection task. In the scanner (a), participants were shown a 
sequence of items that differed in three dimensions (shape, color, and stripe orientation) while they performed one of four tasks: passive view-
ing, indicating the color of the items, indicating the shape of the items, or indicating the orientation of the stripes of the item. Each item was 
followed by a 100-ms blank screen (not shown here). Outside the scanner, participants performed the repetition-discrimination task (b), in which 
they were shown a series of nine items (seven are shown in this example) arranged in a row that alternated along one relevant feature dimen-
sion (in this example, shape). One of the items repeated consecutively, and participants’ task was to indicate what was repeated. A second, but 
irrelevant feature alternated every two positions. On compatible trials, this feature was the same for both items in a target pair (thus facilitating 
identification), whereas on incompatible trials, this feature was different for each item. Reaction time on the repetition-detection task (c) is shown 
as a function of feature dimension and trial type. Error bars are 95% within-subjects confidence intervals.
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participants detected a repetition of one of the three fea-
tures (shape, color, or orientation). The trials were self-
paced, but participants were encouraged to respond 
quickly without losing accuracy. Participants received 
auditory feedback for incorrect responses.

Data analysis

Cortical reconstruction of each participant’s anatomical 
data was performed with FreeSurfer software (Fischl, 
2012). Functional data processing was performed with 
AFNI (Cox, 1996) using the uber_subject.py processing 
stream. The first five volumes were removed from each 
scan to allow for scanner calibration. Functional images 
were corrected for motion (6 degrees of freedom) and for 
differences in slice timing. Volumes with more than 0.3 
mm deviance in motion or more than 1% of the brain 
voxels were outliers in terms of intensity and therefore 
excluded. Data were aligned and registered to a standard 
Talairach space template (2-mm isotropic voxel size). 
Voxels were smoothed using a 4-mm full-width half-max-
imum Gaussian filter. For each run, a cubic polynomial 
was fit and removed to eliminate drift.

Our analyses were run on bilateral LOC regions of 
interest (ROIs) generated from the subject-specific corti-
cal parcellations produced by FreeSurfer. As control 
regions, we also analyzed inferior parietal gyrus; 
response-inhibition ROIs, including anterior cingulate 
cortex and inferior frontal gyrus (Aron, Robbins, & 
Poldrack, 2004, 2014); and a V1 ROI taken from a proba-
bilistic atlas (Wang, Mruczek, Arcaro, & Kastner, 2014; see 
Table S1 in the Supplemental Material). Data were mod-
eled using a restricted maximum-likelihood (REML) 
regression implemented by AFNI to account for serial 
autocorrelation in time-series noise. Because of the high 
temporal pace of the stimulus presentation, accounting 
for autocorrelation was especially important. Each item 
in each task served as a separate regressor (27 items × 4 
tasks = 108 total regressors in the model). Hemodynamic 
response function was fit to each stimulus presentation 
(which were treated as instantaneous) using a gamma 
basis function with its peak 4.7 s after stimulus onset 
(reflecting hemodynamic delay). This REML model 
resulted in beta values that were extracted for each 
regressor and for each voxel within the two bilateral LOC 
ROIs. These values composed the patterns of activity 
used in the subsequent analyses.

Pattern classification

We used multivariate pattern classification to characterize 
neural discriminability of object features. For each clas-
sification analysis, we trained a linear support vector 

machine (Pedregosa et al., 2011) using a leave-one-item-
out cross-validation approach. An example workflow is 
as follows: To classify relevant versus irrelevant features, 
we sorted the patterns of beta values in the ROI on the 
basis of task (indicate shape, color, or orientation). There 
were 27 items for each task. We labeled the patterns for 
the items on the basis of the relevant feature (e.g., square, 
circle, or triangle for the shape task). The classifier was 
trained on 26 of these patterns and tested on the remain-
ing pattern. This process repeated until all permutations 
of the set had been used for training and testing, at which 
point the average accuracy of feature classification was 
determined. Because there were three feature values for 
each feature dimension, chance accuracy was 33.33%. It 
is worth noting that each item always had two other fea-
tures in common with the other items (e.g., a red square 
with vertical stripes shared a feature with all red items 
and with all items with vertical stripes, square or not), 
and the classifier must learn to ignore these similarities to 
successfully classify the item using just the currently rel-
evant feature. As a result, our absolute classification-
accuracy values are an underestimate of their 
representation in LOC (compared with accuracy values if 
the features were somehow presented in isolation).

Representational similarity

To ensure that our results generalized across different 
analytic approaches, we also analyzed our data using a 
pattern-similarity method (Kriegeskorte, Mur, & Bandettini, 
2008; Ward et  al., 2013). Similarity approaches are less 
sensitive but also do not rely on complex voxel-weight 
metrics and thus can be more interpretable. Similarity was 
computed using Pearson correlations between the pat-
terns for each unique pair of the 27 items (351 values 
total). The resulting z-transformed r values correspond to 
either same feature value (e.g., two circles) or different 
feature values (e.g., a circle and a square or triangle), with 
the assumption that patterns for the same item are more 
similar than patterns for different items. Thus, the differ-
ence between same-value similarity and different-value 
similarity serves as an analogous measure of representa-
tional discriminability for that dimension.

Mixed-effects modeling

To relate the feature-classification results to the percep-
tual-grouping behavioral measure, we used mixed-
effects analysis implemented in lme4 (Bates, Maechler, & 
Bolker, 2012) in R software (R Development Core Team, 
2012). Mixed-effects modeling is a powerful statistical 
tool that offers many advantages over conventional 
t-test, regression, and variance and covariance analyses 
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in sophisticated experimental designs. Our analysis 
approach with the mixed-effects models was to treat 
classification accuracy for relevant and irrelevant fea-
tures as a predictor of behavior (perceptual-grouping 
strength). Linear mixed-effects modeling accommodated 
our design well, because we were able to model the 
relationship between classification accuracy and group-
ing strength for each combination of relevant and irrel-
evant features. To determine the significance of a factor 
(e.g., relevant-feature classification accuracy), we used 
the individual estimates for each factor (e.g., how well 
relevant-feature classification predicted grouping 
strength). Subject (N = 24) and feature combination (six 
total combinations) were included as random effects. 
Because the strength of the relationship between classi-
fication accuracy and perceptual grouping could vary by 
combination (i.e., it might be stronger for shape vs. ori-
entation but less strong for shape vs. color), we included 
a random slope for classification accuracy, which also 
provides the regression estimates for each combination.

Results

Behavioral data

In the three active tasks performed in the scanner, partici-
pants were highly accurate at indicating the task-relevant 
feature of each item, with no significant differences 
among tasks in accuracy (color: M = 94.33%, SD = 1.3; 
shape: M = 93.99%, SD = 1.7; orientation: M = 94.00%, 
SD = 2.4), F(2, 46) = 0.032, p = .969, ηp

2 = .001, and reac-
tion time (RT; color: M = 626 ms, SD = 97; shape: M = 622 
ms, SD = 85; orientation: M = 618 ms, SD = 99), F(2, 46) = 
0.31, p = .7348, ηp

2 = .01. A strong priming effect occurred 
when the relevant feature repeated (repeat: M = 564 ms, 
SD = 80; no repeat: M = 649 ms, SD = 107), F(1, 23) = 
76.53, p < .001, ηp

2 = .77. Furthermore, a strong priming 
effect occurred when irrelevant features repeated, even 
when there was no repetition of the task-relevant feature 
(no irrelevant repetition: M = 655 ms, SD = 110; one irrel-
evant repetition: M = 646 ms, SD = 109; two irrelevant 
repetitions: M = 647 ms, SD = 106), F(1, 23) = 4.38, p = 
.048, ηp

2 = .16.

fMRI classification

In bilateral LOC, overall classification accuracy for all fea-
tures (39.65%, SD = 7.59) was greater than chance 
(33.33%), t(23) = 4.08, p < .001, d = 0.83. There was a 
main effect of feature on classification accuracy, F(2, 
46) = 12.84, p < .001, ηp

2 = .36. Shape (44.19%, SD = 9.97), 
t(23) = 5.34, p < .001, d = 1.09, and color (39.60%, SD = 
10.26), t(23) = 2.99, p = .006, d = 0.61, could be classified 
above chance, but orientation could not (35.16%, 

SD = 7.00), t(23) = 1.28, p = .21, d = 0.26. There was no 
interaction between feature relevance and dimension, 
F(2, 46) = 1.21, p = .307, ηp

2 = .05 (Fig. 2b): Within each 
task, task-relevant features (e.g., circle, square, or triangle 
during the shape task scans) were better classified than 
task-irrelevant features (relevant: M = 42.21%, SD = 12.20; 
irrelevant: M = 38.80%, SD = 9.87), F(1, 23) = 12.27, p = 
.002, ηp

2 = .35 (Fig. 2a), consistent with previous research 
demonstrating task-relevant feature enhancement ( Jehee 
et al., 2011).

Representational similarity analyses also revealed that 
patterns were discriminative. Specifically, patterns for the 
same feature value (e.g., all circles) were more corre-
lated than patterns for different feature values (same: r = 
.50, SD = .24; different: r = .49, SD = .23), F(1, 23) = 
14.81, p < .001, ηp

2 = .39, except in the orientation dimen-
sion, t(23) = 0.16, p = .874, d = 0.03. In general, repre-
sentational similarity (r for same values − r for different 
values) was highly correlated with classifier accuracy 
(r = .85, p  < .001) and yielded similar results, although 
the difference in similarity between relevant and irrele-
vant features was only marginally significant, F(1, 23) = 
3.65, p = .069, ηp

2 = .14.

Perceptual grouping (repetition 
discrimination)

In the postscan perceptual-grouping behavioral task, 
overall repetition-detection accuracy was high (92.20%, 
SD = 10.97). Accuracy was higher when relevant-feature 
repetitions were grouped by the irrelevant feature (com-
patible trials: M = 92.76, SD = 10.09) than when relevant-
feature repetitions were not grouped by the irrelevant 
feature (incompatible trials: M = 91.64, SD = 11.83), F(1, 
23) = 8.05, p = .009, ηp

2 = .26. Similarly, correct RTs were 
faster for repetitions on compatible trials (M = 1,405 ms, 
SD = 657) than for repetitions on incompatible trials 
(M = 1,985 ms, SD = 1,358), F(1, 23) = 86.84, p < .001, 
ηp

2  = .79. However, there was a significant interaction 
between grouping type and task, F(2, 46) = 41.96, p < 
.001, ηp

2 = .65 (Fig. 1c), which indicated that the differ-
ence in RTs between compatible and incompatible trials 
was much greater for orientation (M = 1,399 ms, SD = 
862) than for either color (M = 101 ms, SD = 223), t(23) = 
6.98, p < .001, d = 1.46, or shape (M = 239 ms, SD = 178), 
t(23) = 6.16, p < .001, d = 1.28. To minimize the differ-
ences between compatible and incompatible trials 
among the three features, we defined grouping strength 
as the (log-transformed) ratio of compatible-trial RTs to 
incompatible-trial RTs. Because the log transformation 
yields negative values for stronger grouping (i.e., faster 
compatible-trial RT and slower incompatible-trial RT), 
we took the additive inverse of the values to make the 
measure more intuitive.
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Predicting grouping strength from 
fMRI classification accuracy

To test whether task-relevant visual representations 
influenced perceptual grouping, we related relevant-fea-
ture multivariate classification (as our neural measure of 
discriminability) in the scanner to grouping strength out-
side the scanner (as our behavioral measure of percep-
tual grouping) for each subject. This was computed for 
each of the six combinations of relevant and irrelevant 
features: three relevant features (color, shape, orienta-
tion) × 2 possible irrelevant features (e.g., shape and 
orientation when the relevant feature was color). In this 
example, relevant classification accuracy for color and 
irrelevant classification accuracy for shape were related 
to the grouping-strength value for color versus shape. 
The same classification value for color would also be 
paired with irrelevant classification accuracy for orienta-
tion and related to the grouping strength for color versus 
orientation. If the characteristics of feature representa-
tion that benefit neural classification also underlie per-
ceptual grouping, greater classification accuracy for the 
relevant feature than for an irrelevant feature should 
lead to stronger perceptual grouping of the relevant fea-
ture. We used a mixed-effects analysis to accommodate 
the different combinations, treating relevant and irrele-
vant classification accuracy as a predictor of perceptual-
grouping strength.

We found a clear positive relationship between rele-
vant-feature classification accuracy and grouping strength 
(Fig. 3). Across the combinations, classification accuracy 
for the relevant feature was a significant predictor of 

grouping strength (b = 0.313, t = 2.56, p = .0320, 95% 
confidence interval, or CI = [0.07, 0.55]). Classification 
accuracy for the irrelevant feature did not predict group-
ing strength (b = −0.09, t = 0.87, p = .410, 95% CI = [−0.30, 
0.12]).

Furthermore, representational similarity (r for same 
values – r for different values) for relevant features was a 
marginal predictor of grouping strength (b = 1.25, t = 
1.97, p = .051, 95% CI = [0.01, 2.49]). Representational 
similarity for the irrelevant feature did not predict group-
ing strength, although it trended in the opposite direction 
(b = −1.16, t = 1.81, p = .07, 95% CI = [−2.41, 0.09]).

To rule out the possibility that this relationship was 
simply driven by observers’ ability to consciously ignore 
the features, we related RTs from the scanner tasks (when 
observers were indicating the relevant feature value for 
single items) to grouping strength. Naturally, observers’ 
mean RT on the two tasks was correlated (r = .62), t(22) = 
3.677, p = .001, but critically, we found no correlation 
between mean RT from the scanner tasks and grouping 
strength, our measure of interest (r = .26), t(22) = 1.24, 
p  = .23. We also analyzed a more specific measure of 
irrelevant-feature processing from the scanner: irrelevant-
feature priming—that is, how an observers’ response to 
the relevant feature was affected by his or her processing 
of irrelevant information (RT when no irrelevant informa-
tion repeated – RT when any irrelevant information 
repeated). We found no correlation between this mea-
sure and grouping strength (r = −.19), t(22) = 0.93, p = 
.36. In fact, numerically, this correlation went in the 
opposite direction: As noted earlier, irrelevant informa-
tion facilitated responding in the single-item tasks, while 
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Fig. 2. Classification accuracy. Results are shown for task-relevant and task-irrelevant features (a) across feature dimen-
sions and (b) separately for each feature dimension. The dashed lines indicate chance-level performance. Error bars are 
95% within-subjects confidence intervals.
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it helped or hurt differentially in the grouping task, 
depending on features. Thus, the positive relationship 
between relevant-feature classification accuracy and 
grouping strength does not likely reflect just a general 
ability to ignore the same features between tasks. Instead, 
it shows that the more perceptually discriminable the rel-
evant features are in object-selective cortex, the stronger 
the features group together in a perceptual-grouping task 
outside the scanner.

General Discussion

We quantified differences in perceptual feature discrim-
inability using fMRI and showed that these measures pre-
dicted perceptual grouping in a separate behavioral task. 
Feature discriminability could be measured by how well 
we could classify features on the basis of their multivoxel 
patterns in LOC. Pattern-classification accuracy of features 
was higher for task-relevant features than for irrelevant 
features, consistent with prior research showing that task-
relevance improves encoding for relevant features ( Jehee 
et  al., 2011). Notably, variation in pattern-classification 
accuracy for relevant features, measured for single objects 
viewed in the scanner, predicted how strongly these fea-
tures grouped together perceptually, as assessed outside 
the scanner with a completely independent task widely 
used to measure perceptual grouping (Palmer & Beck, 
2007; Vickery, 2008; Vickery & Jiang, 2009). Specifically, 

the more discriminable the features were in the brain, the 
stronger the features grouped together in a behavioral 
perceptual-grouping task. This indicates that the neural 
representations that drive successful pattern classification 
affect perception in general.

How might these neural representations determine 
what people see? Consider cases of high feature dis-
criminability and low feature discriminability: A highly 
discriminable feature dimension would have strong 
within-feature grouping (e.g., squares would be per-
ceived as highly similar to each other, and thus a rep-
etition of two squares would be easy to see) and strong 
between-feature separation (e.g., squares would be 
perceived as very different from circles). In the domain 
of perceptual grouping, compatible irrelevant informa-
tion would facilitate repetition detection (e.g., a repeti-
tion of squares will be aided by a compatible color 
grouping), but because the repetitions (within feature) 
are strongly grouped to begin with, incompatible irrel-
evant information would not drastically impair perfor-
mance. This would lead to strong grouping in this 
feature dimension.

In the other case, a less discriminable feature dimen-
sion would have weak within-feature grouping (e.g., 
squares may not be as readily perceived as similar to 
each other, and thus a repetition of two squares would 
be more difficult to see) and weak between-feature sep-
aration (e.g., squares would be perceived as less 
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Fig. 3. Scatterplot showing the relationship between classification accuracy for relevant 
features and grouping strength for each of the six possible comparisons of relevant 
versus irrelevant features. Grouping strength was defined as the log-transformed ratio 
of compatible-trial reaction times to incompatible-trial reaction times. Each colored line 
represents the regression estimates for a particular combination of features, and the black 
line corresponds to the regression estimates for the overall relationship between the two 
measures.
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different from circles). In the domain of perceptual 
grouping, a repetition of features would be difficult to 
detect, whether the irrelevant information is compatible 
or incompatible. This would lead to weak grouping in 
this feature dimension.

An alternative possibility is that these results reflect 
different abilities to inhibit responses to irrelevant infor-
mation, rather than differences in perceptual processing. 
We distinguish between two types of inhibition described 
by Aron and colleagues (2004, 2014). At the perceptual 
level, attentional weighting—enhancement of task-rele-
vant features and inhibition of task-irrelevant features—
determines the perceptual discriminability of individual 
features; we certainly view our fMRI results as measuring 
this level of perceptual representation. However, behav-
ior is also affected by response inhibition, which occurs 
postperceptually and is best demonstrated in tasks such 
as the Wisconsin Card Sorting Test or the Stroop task. 
This interpretation predicts that perceptual processing of 
task-relevant and task-irrelevant features should be simi-
lar across tasks because inhibition is occurring 
postperceptually.

Three aspects of our results favor a perceptual-level 
explanation rather than a response-inhibition account. 
First, our effects are specific to object-selective cortex and 
were not observed in ROIs such as right anterior cingulate 
cortex and right inferior frontal gyrus, which are impli-
cated in cognitive control (Aron et  al., 2004, 2014), or 
even ROIs that guide attention, such as inferior parietal 
cortex (see Table S1). Second, the response-inhibition 
account predicts that task-irrelevant features should slow 
down responses, but we observed the opposite result. In 
the single-item task in the scanner, irrelevant-feature 
information facilitated response time, which reveals per-
ceptual priming (Chun & Nakayama, 2000; Kristjánsson & 
Campana, 2010). In the grouping task, whether irrelevant 
information helped or hurt depended on the specific fea-
ture combination and on whether or not the irrelevant 
information was compatible with the repetition. Finally, 
although the response-inhibition account specifically pre-
dicts that observers’ responses in the tasks will be corre-
lated because the tasks both require inhibition of the 
same irrelevant information, we found no relationship 
between irrelevant-feature priming and grouping strength 
across our two tasks. Thus, rather than response inhibi-
tion, our data suggest that feature discriminability and 
behavior are dynamically affected by task relevance at the 
perceptual level.

Thus, our findings support a dynamical systems 
approach to perceptual organization (see Wagemans, 
Feldman, et al., 2012, for a review), in which perception 
is not simply a process of going from static input to static 
output but depends on a combination of such factors as 
the physical salience of the feature, current goals, and 

selection history. We have shown that fMRI can quantify 
this dynamic variance in neural feature representation 
across individuals and can predict basic perceptual oper-
ations, such as grouping, in an independent task.
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